
A FIRST REPORT ON DEFORMATION-MECHANISM MAPS* 

M. F. ASHBYf 

This report introduces the idea of deformation--mechanism map: maps which display the fields of 
stress and temperature in which a particular mechanism of plastic flow is dominant. Most materials have 
the capacity to deform by several alternative and independent mechanisms: dislocation glide, diffusional 
flow and dislocation creep are examples. Each appears on the map as a field. A point on a map then 
identifies the dominant mechanism and indicates the resulting strain-rate. 

Three applications of the maps are discussed. First, they permit a study of the effect of crystal 
structure and atomic bonding on plastic flow. Second, they help in the design of experiments to study a 
given flow mechanism and in locating, identifying and characterizing missing mechanisms. And, third, 
they are useful in a qualitative way for choosing a material for engineering applications, for predicting 
the mechanism by which it deforms and hence in selecting, or predicting the effects, of strengthening 
mechanisms. 

CARTES DES MECANISMES DE DEFORMATION 

L’auteur introduit l’idee des cartes des mecanismes de deformation: cartes qui donnent les champs de 
contraintes et de temperatures dans lesquels un mecanisme plastique particulier est dominant. La 
plupart des materiaux sont capables de se d&former par differents mecanismes possibles et independants: 
le glissement des dislocations, le fluage des dislocations ou par diffusion, en sont des exemples. Chacun 
d’eux apparait sur la carte comme un champ. Un point sur une carte identifie donc le mecanisme 
dominant et indique la vitesse de deformation resultante. 

L’auteur presente trois applications de ces cartes. Elles permettent d’abord une etude de l’iniluence 
de la structure du cristal et des liaisons atomiques sur la plasticit& Deuxiemement, elles aident a choisir 
les experiences necessaires pour etudier un mecanisme don&, et a localiser, identifier et caracteriser les 
mecanismes manquants. Troisiemement, elle sont utiles qualitativement pour le choix des materiaux b 
applications industrielles, pour la prevision des mecanismes par lesquels ils se deferment et, a partir de 18, 
pour selectionner ou prevoir les effets des mecanismes de consolidation. 

EIN ERSTER BERICHT UBER EINE DARSTELLUNG DER VERFORMUNGS- 

MECHANISMEN IN EINER ART LANDKARTE 

In diesem Bericht wird die Idee van Ubersichtskarten oder Landkarten der Verformungsmechanismen 
vorgestellt: Die Landkarten zeigen Spannungs- und Temperaturfelder, in denen bestimmte Mechanis- 
men des plastisohen FlieBens dominieren. In den meisten Materialien kijnnen mehrere alternative und 
unabhiingige Verformungsmechanismen wirksam sein: Versetzungsgleiten, FlieBen aufgrund van 
Diffusionsvorgangen und Versetzungskrieohen seien als Beispiele genannt. Jeder Mechanismus ersoheint 
auf der Landkarte als ein Feld. Ein Put&t auf der Landkarte gibt dann sofort den dominierenden 
Mechanismus und einen Hinweis auf die Abgleitgeschwindigkeit. 

Drei Anwendungen der Landkarten werden diskutiert. Erstens erlauben sie die Untersuchung des 
Einflusses der Kristallstruktur und der ohemischen Bindung auf das plastische FlieBen. Zweitens helfen 
sie beim Entwurf von Experimenten zur Untersuchung eines bestimmten Flienmechanismus sowie beim 
Auffinden, bei der Identifizierung und Charakterisierung fehlender Mechanismen. Drittens sind sie sehr 
niitzlich bei der Wahl van Materialien fur Anwendungszwecke, bei der Vorhersage des Mechanismus, 
durch den sioh das Material verformt und somit bei der Auswahl und Vorhersage der Einfliisse van 
Verfestigungsmeohanismen. 

1. INTRODUCTION: DEFORMATION MECHA- 

NISM MAPS 

When crystalline matter is plastically deformed, 

its crystallinity is preserved. There are at least six 

distinguishable and independent ways in which a 

polycrystal can be deformed and yet remain crystal- 

line. All but one of them involve the motion through 

the grains, or round their boundaries, of lattice 

defects. 

creep.: Point defects also permit plastic flow when 

they move : two independent kinds of di$@.sional jlow 

result from flow of point defects through grains and 

round their boundaries ; these fourth and fifth 

mechanisms are sometimes called Nabarro-Herring 

creep and Coble creep, respectively. Finally twinning 

provides a sixth mechanism ; unlike the others it can 

supply only a limited amount of deformation. 

The aim here is to present in a simple manner the 

way in which the alternative deformation mechanisms 

compete; that is, the values of stress and temperature 

First, a stress which exceeds the theoretic& shear 
strength causes flow even in a defect-free crystal; we 

call this defect-less flow to distinguish it from all other 

kinds of plastic deformation, since they require 

defects to be present. Second, the glide motion of 

dislocations can lead to extensive plastic flow. At high 

temperatures the ability of dislocations to climb as 

well as glide introduces a third mechanism : dislocation 
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$ It may be questioned that dislocation glide and disloca- 
tion creep are distinguishable, independent, mechanisms. 
The two display different and characteristic, activation 
energies; and give strain-rates which depends on stress in 
different and characteristic ways. So they are certainly 
distinguishable mechanisms, both potentially able to permit 
steady-state deformation. But it is not clear that they are 
independent. Only alternative, independent mechanisms 
(i.e. those giving additive strain rates) appear as separate 
fields. For the purposes of this report we shall treat them as 
such. 
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Fra. 1. A deformation-mechanism map for pure silver, 
of grain size 32 ,u, and for a critical strain rate 8, of 

l0-8jSW. 

for which each controls the flow stress. This we do by 
plotting maps in stress/temperature space. * The space 
is divided into fields. Within a field, one mechanism 
is dominant; that is, it supplies a greater strain-rate 
than any other mechanism. Figure 1 shows one 
way in which the result can be presented; it is a 
map for silver. Where the strain-rate is too small to 
be measurable, itn elastic field appears. Throughout 
we consider steady-state flow only, and we assume 
that fracture does not intervene. 

We now discuss the ~onstitutive equations used to 
construct the maps. I have attempted to choose the 
form which, in my judgement, best combines sim- 
plicity with a uniform level of accuracy. Exhaustive 
references to the historical development of these 
equations and discussions of their reliability would be 
out of place ; instead I simply refer in each case to 
recent reviews. 

2. CONSTITUTIVE EQUATIONS 

Standard relations between tensile stress and 
tensile strain rate are used to construct the maps. 
They, and the rne~h~~srns on which they are based, 
are outlined briefly below. We treat all the mecha- 
nisms as capable of permitting steady-state flow. 

2.1 _Ctefect-Eess $0~ 

A defect-free crystal can, of course, deform plasti- 
cally. At a sufficiently high stress, planes of atoms in 
the crystal can be lifted bodily over neighboring 

* Such a diagram, in approximate form, has been presented 
by Weertman.‘7) 

planes, producing permanent deformation. The very 
large stress required to do this has been recalculated 
and refined repeatedly over the last 40 yr (see 
Kelly(l)). This theoretical shear strength is always of 
order ,~I20 (where ,u is the shear modulus) and is 
practically independent of temperature. Accordingly, 
we adopt the following simplified eonstitutive relation 
to define the defect-less flow field: 

CP ‘1 (1) 
d, = 0 

CT 
_<..-- 
P P 

where Z is the tensile strain-rate and oTE the tensile 
stress corresponding to the theoretical shear strength. 
(Throughout this article, we relate tensile stresses to 
shear stresses by using the von Mises criterion, 

yielding a = 2/%, where 7 is a shear stress.) 

Practically all crystals contain dislocations. The 
great ease with which they move in f.c.c. and h.c.p. 
crystals means that, in practice, dislocation glide in 
these crystals is limited by the presence of obstacles 
to slip: impurities, solute, other dislocations or 
precipitates. For such crystals, the flow stress is 
proportional to ,&/E, where 1 is the obstacle spacing 
and b the Burger’s vector. The constant of propor- 
tionality is complicated; it depends on the strength 
of the obstacles and on the statistics of their distri- 
bution. For the purposes of this article we adopt the 
folIowing eonstitutive equation for dislocation 
glide;@J) 

Here S = $$ describes the flow stress at absolute 
zero; k is Boltzmarm’s constant, T the absolute 
temperature, a the activation ares, and o. is a cut-off 
stress, sometimes called the “athermal part of Aow 
stress”. 6,, the preexponential term, is the strain-rate 
when c = X. 

Dislocation motion in b.c.c. and diamond cubic 
crystals, and in oxides and carbides, is more difikult : 
the crystal lattice itself resists the motion, in a way 
which increases rapidly with decreasing temperature. 
Following Guyot and Dorm(*) I have adopted for this 
lattice resistance & Peierls potential of parabolic form, 
such that the activation energy required to move a 
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dislocation has the form 
d 2 

u = 2u, 1 - -E ( I 0 

Here G, is the flow stress at 0°K and u, the energy of 
formation of a kink pair. The strain-rate is given by 
is’, where 

i,’ = 
U 

i,’ exp - k~ (2b) 

and Ed’ is an appropriate pre-exponential term. Unlike 
every other constitutive equation discussed in this 
article, this one does not represent an alternative, 
independent mechanism. The lattice resistance is a 
strengthening mechanism, not a deformation mecha- 
nism. It must be included by superimposing stresses, 
not strain rates. In computing the maps, I have 
assumed that it adds linearly to the effect of obstacles. 
(The superposition of strengthening mechanisms is 
rarely this simple; see reviews 2 and 3.) 

2.3 Diffusional creep 

Diffusional flow of single ions, either by bulk 
transport or by grain-boundary transport, leads to the 
Newtonian-viscous creep of a polycrystal. The two 
alternative flow paths represent independent, additive 
contributions to the overall strain-rate. The most 
recent re-analysis of this problem yields the following 
combined constitutive equationt5) 

i 3,4 = 14g; D,(I +;$) (3,4) 

relating the tensile strain-rate to the tensile stress. 
Here Q is the atomic volume, cl the grain size, D, the 
bulk self-diffusion coefficient, DB that for boundary 
diffusion and 6 the effective cross section of a boundary 
for diffusional transport. When bulk diffusion 
dominates, the creep is often called Nabarro-Herring, 

or simply Nabarro-creep; when, instead, boundary 
diffusion dominates, it is known as Cable-creep. 

Although a proper treatment yields the combined 
equation (3,4), the two processes are independent and 
distinguishable and therefore each qualifies for a field. 

2.4 Dislocation-creep 

At temperatures above about O.EiT,, and relatively 
high stresses, dislocations move through the grains of a 
polycrystal and aggregate to form cells. The ensuing 
deformation is apparently diffusion controlled (unlike 
dislocation glide), but the strain-rate is a non-linear 
function of stress (unlike diffusional creep). This 
dislocation creep is found experimentally to obey the 
constitutive relation,(6*7) 

D,,ub G n 
,&~A-- - 

0 kT ,M 

where A and n are constants. Although the general 
form of this equation can be arrived at theoretically 
(for instance, by postulating that it is simply diffu- 
sional flow with the grain size replaced by a stress- 
dependent cell size), no really convincing theory can 
be said to exist. But it is extraordinarily well docu- 
mented from an experimental point of view: data 
exist for the constants A and n for a wide variety of 
materials. 

2.5 Other mechanisms 

Although it cannot lead to unlimited deformation, 
twinning is a way of deforming a crystal, while 
retaining its crystallinity. For f.c.c. metals a twinning 
field appears at low temperatures; it typically 
exists only below about 20°K. For hexagonal metals 
it may extend above room temperature. It has been 
ignored in the maps shown here. 

Other, as yet unidentified (or, at best, speculative) 
mechanisms certainly exist; we return to this point 
in Section 4.2. But for the purposes of this report, we 
shall limit the discussion to the six mechanisms listed 
above. 

3. DEFORMATION-MECHANISM MAPS 

3.1 Construction of the maps 

Consider a two dimensions1 stress/temperature 
space. As a stress coordinate we use a normalized 
tensile stress G/,u, where ,u is the shear modulus. As 
temperature coordinate we use homologous temperature, 

T/T,, where T, is the melting point of the material. 
(This normalization has the great advantage of 
reducing the maps for materials of the same crystal 
class, and with similar bonding, to a single group.) Let 
G/,U range from 10-s to 1, and Xl X, range from 0 to 1; 
these ranges cover all possible values of the variables 
ever found in practice. 

The construction of the maps involves two stages. 
We first ask: in what Jield of stress/temperature space 

is a single mechanism dominant-that is, where does 
it supply a greater strain-rate than any other single 
mechanism ! The boundaries of the Jields are obtained 
by equating pairs of the constitutive equations (l)-(5), 
and solving for stress as a function of temperature. At 
a field boundary, the two mechanisms which meet 
there contribute equally to the strain-rate. At a point 
where three fields meet, three mechanisms contribute 
equally. Figure 2 shows the fields obtained in this way. 

Any pair of values of stress and temperature now 
locates a point in a field. From the map we can read- 
off the dominant mechanism. From the appropriate 
constitutive equation we can calculate the strain-rate. 
This allows us to plot contours of constant strain-rate 
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Fm. 2. Mechanism fields for pure nickel with a grain size 
of 32 PC. The fields are labeled with the appropriate 
constitutive equation. Field boundaries are obtained by 

equating constitutive equations. 

onto the diagram. Figure 2, modified in this way, is 

shown in Fig. 3. A second example, for tungsten, is 

shown in Fig. 4. Details of the calculation appear in 

the Appendix, together with the very considerable 

amount of data required for their construction. 

We now have a map which is really useful. Knowl- 

edge of any pair of the three variables of strain-rate, 

stress and temperature locates a point on the map, 

identifies the dominant mechanism or mechanisms, 

and gives the value of the third variable. Some uses 

of the maps are discussed in Section 4. 
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Fm. 3. A complete map for pure nickel with a grain size 
of 32 ,S 

3.2 Characteristics of the $elds 

Each field has its own characteristics. Diffusional 

creep is strongly grain-size dependent : the others are 

not. Glide and dislocation creep cause a texture to 

develop ; diffusional creep does not. Diffusional creep 

is a linear-viscous process; all the others are non- 

linear. These and other characteristics such as the 

activation energy, the presence or absence of a 

transient, etc., help to identify a field. 

3.3 Effect of microstructure 

Consider a map on which one strain-rate contour- 

that for d = 10-8/sec, appears. We may imagine that 

our test machine can detect no strain-rate smaller 

than this. A large field of the map then corresponds 

to purely elastic (or anelastic) deformation, as shown 

in Fig. 1. 
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FIG. 4. A complete map for pure tungsten with a grain 
size of 10 p. 

Figures 5 and 6 show the effect of microstructure on 

such a map. If the spacing of strong obstacle (1) or the 

equivalent density of forest dislocations (p) is changed, 

the glide field grows or shrinks as shown crudely in 

Fig. 5. Strong, stable, obstacles also alter the disloca- 

tion creep field, but (except under special circum- 

stances) have practically no effect on diffusional creep. 

Grain size has a profound effect on diffusional creep 

(Fig. 6). Decreasing the grain size has a small effect 

on the glide field, causing a slight strengthening not 

shown on the figure. 

Obviously, microstructure has a profound effect on 

plastic deformation. At low temperatures, the yield 

strength is proportional, roughly, to the reciprocal of 
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FIQ. 5. Changing the obstacle spacing, I, or (equivalently) 
the dislocation density, p, causes the glide field to shrink 

or expand. 

the spacing of obstacles. The high temperature 
diffusional-creep strength is proportional to the square 
or the cube of the grain size. These are rapid dependen- 
cies, and lead to wide changes of property with micro- 
structures. Note, particularly, that a microstructural 
change (or a strengthening mechanism) does not affect 
all fields equally. Point obstacles, for instance, act as a 
strengthening mechanism for dislocation glide, but 
do not always inhibit diffusional flow. It does not 
make sense to precipitation-harden an alloy which (in 
its use) deforms by diffusional creep. 

3.4 Limitations and extensions of the maps 

The most obvious limitation of the maps in their 
present form is their limitation to steady state pow. 

Time, or strain-dependent effects are not included. 
One could construct maps using time or strain- 
dependent constitutive equations, though displaying 
the results in a useful way presents problems. A map 
then represents flow at a given time or strain. 

Although the maps shown here are based on tensile 

stress and strain rates, their use is not limited to the 
tensile stress-state. The stress axis of the diagrams 
can be regarded as an equivalent stress, related to the 
multiaxial state of stress in a body by the von Mises 
criterion. The contours of constant strain-rate then 
become contours of equivalent strain-rate, related by an 
analogous criterion to the strain-rate tensor (see 
Ref. 8). 

Finally, I believe that several mechanisms fields are 
missing from the present maps. We return to this 

point later in the report. Even the construction of 
those which do appear involves approximations, and 
is, in a number of ways, inadequate (see the Appendix). 
In certain ways they could be improved; but the major 
inadequacies reflect a more fundamental problem : 
the poor level of our understanding of creep, particu- 
larly in alloys. The maps are only as good as the 
constitutive equations-be they theoretical or 
empirical-used to construct them. Yet for compari- 
son purposes, many of these criticisms do not apply. 
If we simply wish to compare different f.c.c. metals, or 
compare typical f.c.c. with typical b.c.c. metals as we 
do in the next section, then (since the same assump- 
tions were used to construct all maps) the comparison 
is a valid one. 

4. APPLICATION OF THE MAPS 

4.1 Effect of bond-type and crystal structure 

on pkcstic properties 

Suppose one could produce metals, non-metals, 
oxides and other materials with the same micro- 
structural features. Then the difference in their 
strengths would have its origin in their crystallography 
and the nature of the bonds holding their atoms 
together. The next sequence of maps shows the results 
of such an investigation. To make the comparison 
easier, the maps show only one strain-rate contour: 
that for d = 10~*/sec. All maps refer to a standard 
microstructural state : a grain size of 32 p, and an 
obstacle density of 4 x 101°/cm2. The comments 
below refer to this standard state. 
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FIG. 6. Changing the grain size d, expands or contracts 
the diffusional-flow fields. It also has a small effect on the 

dislocation glide field (not shown). 
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In all, I investigated 7 f.c.c. metals; maps for three 
of them are shown in Fig. 7, and a fourth was shown 
as Fig. 1. All have well developed Nabarro and Coble 
creep fields. Silver (Fig. 1) typifies the noble metals 
Cu, Ag, Au. For all three the temperature separating 
the Nabarro-creep from Coble-creep occurs between 
0.8T, and 0.9T,. 

The other f.c.c. metals (lead, aluminum, nickel and 
gamma-iron) are somewhat more varied. All have 
higher values for the transition temperature. Alu- 
minum has a particularly large dislocation-creep field. 
Nickel appears to be particularly sensitive to Coble 

TEMPERATURE OC 

TEMPERATURE *C 

DIFFUSIONAL FLOW y 

^ 

ELASTIC REGIME 

_I 

Iv I I I I I I 0 .I 2 +lr .3 4 5 .L : .1 .b 1.0 
HOMOLOGOUS TEMPERATURE T/TM 

(b) 

TEMPERATURE *C 
- 200 -1w 0 100 203 300 

HOMOLOGOUS TEMPERATURE T/TM 

(c) 

F1a.7.(e)-(c) Specializedmapsfor 8, = 10-s/sec, cl = 32 p 
and p = 4 x 101O/cm* for three f.c.c. metals: (a) nickel, 
(b) aluminum, (c) lead. A similar map for silver was 

shown in Fig. 1. 

creep. Lead has exceptionally small diffusional flow 
fields, reflecting its relatively small diffusion coeffi- 
cients. All in all, however, the f.c.c. metals fall into a 
broad class, with remarkably similar maps. This is 
true not only of the specialized maps in Fig. 7, but of 
the complete maps such as Fig. 3. The small differences 
between them stem mainly from the differences in 
diffusion coefficients (among f.c.c. metals, diffusion 
coefficients normalized to the melting point vary by a 
factor of about 20). 

Figure 8 shows maps for hexagonal metals. Those 
with non-ideal c/a ratios-cadmium and zinc, for 
instance-appear to differ from f.c.c. metals, being 
more susceptible to Nabarro creep. This enlarges the 
Nabarro-creep field at the expense of that for Coble 
creep, pushing the transition temperature which 
separates them to lower temperatures. Although the 
data used to construct the maps is really not accurate 
enough to be sure of this conclusion, the one hexagonal 
metal with an almost ideal c/a ratio (thallium) does 
not show this extended diffusional-creep field. 

The maps for b.c.c. metals do differ in a significant 
way from those for h.c.p. and f.c.c. metals. Five were 
investigated; maps for two are shown in Fig. 9. The 
bulk diffusion coefficients of b.c.c. metals are signifi- 
cantly larger, at a given homologous temperature than 
those of the close packed metals. This swells the 
Nabarro and the dislocation creep fields at the ex- 
pense of the Coble creep field, which (for this standard 
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FIU. 8. Specialized maps for two hexagonal metals: (a) 
cadmium and (b) thallium. Thallium transforms to a 
b.c.o. structure at 23O”C, when its creep rate increases 

because diffusional transport through it is faster. 

set of eonditio~) almost disappears. This is because, 
although the relative rate of bulk diffusion is larger in 
b.c.c. metals, that of boundary diffusion apparently 
is not. The low-temperature strength of b.c.0. metals 
is more strongly temper&ture dependent than that of 
close packed metals because of the lattice resistance 
[equation (2b)]. Like those for f.c.0. metals, the b.c.c. 
maps form a group with broadly similar characteristics. 

The effect of a phase change on creep is illustr&ted by 
the maps for thallium [Fig. 8(b)] and for iron [Fig. 

4 

9(b)]. They help to emphasize the fact that the close- 
packed structure is int~nsic~lly more creep-resistant 
than the b.c.c. structure. 

The diamond-cubic elements Ge and Si show 
extremely small diffusional-creep fields (Fig. 10). 
This is a direct result of the large energy-of-formation 
of a vacancy (and consequent low rate of diffusive 
transport) which is characteristic of this structure. A 
direct comparison between silver and germanium is a 
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FIG. 9. Specialized maps for b.o.c. metals: (a) tungsten; 
(b) iron. Iron transforms to an f.c.c. structure at 911°C 
and back to a b.c.c. structure at 1392°C. Note that the 
f.c.e. form of iron creeps less fast than the b.c.c. form 

because of its relatively smaller diffusion coefficients. 
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FIG. 10. A specialized map for germanium. 

profitable one, since the two in almost all other 

respects are very similar (in melting point, shear 

modulus, cohesive energy). 

Oxides (Fig. 11) are much more variable-and the 

data for them is much less reliable-than metals. 

They show smaller diffusional-creep fields than metals, 

and for the standard set of conditions, the Coble creep 

field is absent. (Remember, however, that for some 

other set of conditions, it would re-appear.) Any 

attempt to plot reliable maps for oxides is frustrated 

at present by the lack of reliable diffusion data. 

4.2 Design and interpretation of experiments; 

and the search for missing mechanisms 

By far the most useful form of the maps is that 

shown in Figs. 3 and 4. A set of such maps, spanning 

the normal range of grain sizes (say 1 p to 1 mm) 

summarizes the entire state of our knowledge of 

steady-state flow for a given material. If one wishes 

to design an experiment to study Coble creep, for 

instance, then the appropriate map shows the range 

of stress and temperature which should be applied to 

specimens in order that they deform by Coble creep; 

it further indicates the strain-rate to be expected. 

More accurately, it shows the best guess that our 

present knowledge of plastic flow allows us to make. 

The maps are based on our current understanding of 

creep and plastic flow mechanisms, and on experimen- 

tal data. In spite of the long history of mechanical 

metallurgy, neither is complete or wholly trustworthy. 

It has become clear from a survey of the literature, 

and from our work, that mechanisms are missing from 

the maps shown here : at low temperatures (<*TM) 

for instance, it is clear that a non-linear creep field 

separates the glide field from the Coble-creep field. 

There is evidence that the constitutive equation for 

diffusional flow may be incorrect, predicting strain- 

rates that are a factor of 10 too small, perhaps because 

of another missing mechanism. Further, at certain of 

the boundaries between two fields, complicated com- 

bined mechanisms occur (for instance, grain-boundary 

sliding coupled with dislocation creep) which are not 

simply the linear superposition of the two mecha- 

nisms which meet at the boundary. It is tempting to 
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ask whether superplastic flow is an independent 

deformation mechanism and should therefore appear 

as a field in its own right. At present these missing 

mechanisms are too poorly understood to include 

them; but the maps help localize the regime of stress, 

temperature, strain-rate and grain size for which data 

(and a theoretical understanding) are needed. 

Finally they help in obtaining reliable constitutive 

equations from experiments. If experiments are 

conducted well within a field, where a single mech- 

anism is dominant, then the results can be used to 

construct a constitutive equation which can legiti- 

mately be used to extrapolate the effects of that 

mechanism to other temperatures or stresses. But 

data obtained at or near a field boundary must not 

be used in this way: on changing the stress or tem- 

perature the relative contributions of the two mecha- 

nisms which meet at the boundary change also. 

No single constitutive equation can describe the 

results; extrapolation is dangerous. 

4.3 Engineering applications and useful 

strengthening mechanisms 

Suppose-to take an example-that a turbine blade 

operates with a known temperature and stress distri- 

bution on it. This stress-temperature profile can be 

plotted onto the map (like those of Figs. 3 and 4) 

appropriate to the material, as it line or band. The 

mechanism by which each part of the blade deforms, 

the strain-rate of that part and the appropriate 

constitutive equation, can be read immediately from 

the map. Problems involving multiaxial stress 

states are handled by computing equivalent stresses 

(and strain-rates) via the von Mises (or equivalent) 

equation. 

A strengthening mechanism is only meful if it slows 

the rate of deformation in the right field of the map. 

A mechanism-dispersion hardening for example- 

which slows dislocation creep has further repercussions : 
it results in the movement of field boundaries such 

that the dislocation-creep field shrinks and the 

diffusional fields expand. To continue the example of 

the last paragraph: a turbine blade that previously 

lay in the dislocation creep field may now deform by 

another mechanism-diffusional creep. Further in- 

hibition of dislocation creep is useless ; the blade now 

deforms by diffusional creep, which (in general) is not 

susceptible to the same strengthening mechanisms 

which work for dislocation creep. 

5. SUMMARY AND CONCLUSIONS 

1. Sufficient theory and data exist to permit the 

construction of deformation-mechanism maps showing 

the fields of stress and temperature in which each of six 

(or more) independent mechanisms for plastic flow is 

dominant. Knowledge of any two of the three vari- 

ables of stress, temperature and strain-rate locates a 

point on the map, identifies the dominant mechanism 

or mechanisms and gives the value of the third 

variable. 

2. Like phase diagrams, the maps are only as good 

as the theory and the experimental data used to 

construct them-and at the present both must be 

termed poor. But-like phase diagrams-they are 

useful in spite of their inexactness for both designing 

and interpreting experiments and in selecting and 

understanding the behavior of materials for engineer- 

ing applications. And, by identifying the places where 

data or theory are poor, they can be systematically 

improved. 
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APPENDIX 

Details of the computation 

TheJield boundaries were computed by equating the 

constitutive equations (l)-(5) in pairs, and solving the 

resulting implicit equation for stress as a function of 

temperature. The contours of constant strain rate were 

obtained directly from the constitutive equation for 

that$eld; this ignores contributions from the mecha- 

nisms from neighboring fields which, strictly, should be 

added to major contribution of the dominant mecha- 

nism. 

Wherever possible the shear modulus was calculated 

as 

p = ~3%4(Cn - cn?) 

I aimed at accuracy to within a factor of 2. Since the 

shear modulus can vary by this factor between 0°K 

and the melting point, a linear temperature depend- 

ence of the modulus was included. The atomic 

volume, on the other hand, varies much less rapidly 

with temperature; this dependence was ignored. 

The input data for the calculations, and its source, 

is listed in Table 1. Diffusion data for non-metals, 

much of the grain boundary diffusion data, and much 

dislocation creep data cannot be regarded as accurate 

to within a factor of 2. In certain cases, data were not 

available for boundary diffusion coefficients, or for the 

Peierls potential. In these cases, rather than leave out 
fields which certainly must exist, data were inferred by 

scaling data for other materials of the same structure 

and of similar melting point. Such data are referred to 
as “inferred data” (*) in Table 1. 

The theoretical shear strength was taken to be 

0.039 ,u. Strictly, it is structure dependent (Kelly(l)) 

but for our purposes, a single, constant value for all 

materials is adequate. 

The effect of a Peierls potential was included for 

b.c.c. metals. The necessary data is shown in Table 2 

TABLE 2 

Activation 
energy Preexpo- 

Peierls for kink nential 
stress nucleation factor 

7= x 109 Ule x 10’2 PO 

(d&em? (eV) ( /see) References 

Molybdenum 4.13 0.62 104 4 
Tantalum 3.34 0.31 104 4 
Tungsten 4.1 0.6 10’ 
a-iron 4.5 0.31 104 4* 

* No data available. Data for molybdenum used for 
tungsten calculation. 

and refers to shear stress and shear strain rate; con- 

version to tensile stress and strain rate simply requires 

setting Ok = v%, and 1/%,’ = ?,-,I. The quantity 

PO’ was chosen so that the contribution of the Peierls 

resistance to the flow stress becomes negligible above 

a characteristic temperature. By fitting the equation 

to data for tantalum, the value PO’ = lo4 was ob- 

tained. 

As pointed out in the text, a standard microstructural 

state must be chosen to make maps for different 

materials comparable. The “specialized maps” of 

Figs. 7-11 were computed for an obstacle spacing of 

4 x 1O-5 cm and a grain size of 32 x lop4 cm. 


